Using Simulation to Guide Your Research

Roger Strong Harvard University

Vision Sciences Laboratory

Why Use Simulation?

Simple answer: often the easiest way to solve a problem

Toy Example: The Birthday Problem

• How many randomly chosen people are needed for there to be > 50% chance that two of them have the same birthday?

The Birthday Problem

5

8

9

10

11

15

17

No Simulation

Person 1 has a random birthday Odds person 2 has a different birthday: 364/365 Odds person 3 has a different birthday: 363/365 Odds person *n* has a different birthday: (365 - n + 1) / 365

Odds no matches after 3 people: 364/365 * 363/365 Odds no matches after n people:

> 365! $365^n(365-n)!$

Simulation

```
1 -
       clear
2 -
       nSims = 10000;
       people = 1:100;
     \Box for nPeople = people(2:end)
6 -
           match count = 0;
7 -
            for sim = 1:nSims
                %pick random birthdays
                birthdays = ceil(rand(1, nPeople)*365);
                match_count = match_count + ...
                    double(length(unique(birthdays)) < length(birthdays));</pre>
12 -
           end
13 -
            match_percentage(nPeople) = match_count/nSims;
14 -
       end
       answer = min(find(match_percentage > .5));
16 -
18 -
       plot(people, match_percentage)
19 -
       ylabel('Match Percentage', 'FontSize', 20)
       xlabel('Number of People', 'FontSize', 20)
20 -
```

The Birthday Problem

The Birthday Problem Extension

• How many randomly chosen people are needed for there to be > 50% chance that THREE of them have the same birthday?

The Birthday Problem Extension

6

9

10

11

12

13

14

15

16

17

18

19

20

21 22

23 24

No Simulation

Say that a map $f : [m] \to [n]$ is k-almost injective if $|f^{-1}(j)| \le k$ for all $j \in [n]$. Counting injective maps is easy, there are

$$I(1, m, n) := m! \binom{n}{m}$$

of them. You just pick the range and then a bijection to it. This gives right away the standard birthday collision probability for m people and years of length n

 $1 - n^{-m}I(1, m, n)$

One gets the generalized birthday probability from I(k, m, n) in the same way, so we can just think about I(k, m, n).

How would we go about counting 2-injective maps? The same idea as before works. This time, we pick c pairs that will have colliding images, injectively map these into [n], then injectively map the rest to a set of size n - c. So we get

$$I(2,m,n) = \sum_{c=0}^{\lfloor m/2 \rfloor} \frac{1}{c!} \left(\prod_{j=0}^{c-1} \binom{m-2j}{2} \right) I(1,c,n) I(1,m-2c,n-c)$$

This is equivalent to Dasgupta's formula, but it is easier to see the induction.

If we want to get I(k, m, n) in general, we have

$$I(k,m,n) = \sum_{c=0}^{\lfloor m/k \rfloor} \frac{1}{c!} \left(\prod_{j=0}^{c-1} \binom{m-kj}{k} \right) I(1,c,n)I(k-1,m-kc,n-c)$$

https://math.stackexchange.com/guestions/25876/ probability-of-3-people-in-a-room-of-30-having-the-samebirthday/25880#25880

Simulation

- clear
- 2 nSims = 10000;3 people = 50:200;4 required_matches = 3; 5 desired_probability = .5; 7 count = 0;8 \Box for nPeople = people count = count + 1;match_count = 0; 白 for sim = 1:nSims %pick random birthdays birthdays = ceil(rand(1, nPeople)*365); %increase count if required # matches match_count = match_count + ... double(max(histc(birthdays,... unique(birthdays))) >= required matches); end match_percentage(count) = match_count/nSims; end answer = people(min(find(match percentage > desired probability))) plot(people, match_percentage) 25 ylabel('Match Percentage', 'FontSize', 20)

26 xlabel('Number of People', 'FontSize', 20)

The Birthday Problem Extension

1. Guiding Experimental Design

2. Understanding Results

3. Your examples?

- 1. Guiding Experimental Design
 - -Modeling false positive rates
 - -Choosing exclusion criteria
 - -Power analysis

- 1. Guiding Experimental Design
 - -Modeling false positive rates
 - -Choosing exclusion criteria
 - -Power analysis

If H_0 is true, what is the distribution of p-values?

If H_0 is true, what is the distribution of p-values?

Desired α .05 p_crit .05 Ν 16	False Alarm Rate Simulator
# Trials 200 # Exps 100000 Supplement? 0 If yes:	
Desired α desired false alarm rate (usually .05) p value used to determine significance after initial data collection * of subjects for initial data	Simulation Progress
# Trials # of trials for each experiment condition # Exps # experiments to simulate Supplement? run more subjects if p < p_supp?	
If yes: p_supp N2 # additional subjects to run when supplementing data p_crit2 significance after supplemental data collection	

- 1. Guiding Experimental Design
 - -Modeling false positive rates
 - -Choosing exclusion criteria
 - -Power analysis


```
clear
 1 -
       close all
 2 -
       nTrials = 48;
 3 -
       nSubs = 100000;
 4 -
 5
       scores = rand(nSubs, nTrials) > .5;
 6 -
       mean_scores = mean(scores, 2);
 7 -
 8
 9 -
       cutoff_range = .4:.05:.75;
      \Box for c = 1:length(cutoff_range)
10 -
            percent excluded(c) = mean(mean scores <= cutoff range(c));</pre>
11 -
12 -
       end
13
       figure(1)
14 -
15 -
       clf
       plot(cutoff_range, percent_excluded)
16 -
       title(['nTrials = ', num2str(nTrials)], 'FontSize', 16)
17 -
18 -
       xlabel('Cutoff', 'FontSize', 20)
19 -
       ylabel('Percent "Chance Subjects" Excluded', 'FontSize', 20)
```


What about subjects not at chance levels?

```
clear
 1 -
2 -
       close all
3 -
       nTrials = 48;
 4 -
       nSubs = 10000;
 5 -
       exclusion level = .6;
6
7 -
       real ability = .5:.05:1;
8
      □ for c = 1:length(real_ability)
9 -
            scores = rand(nSubs, nTrials) < real_ability(c);</pre>
10 -
            mean_scores = mean(scores, 2);
            percent_excluded(c) = mean(mean_scores <= exclusion_level);</pre>
11 -
12 -
       end
13
       figure(1)
14 -
15 -
       clf
       plot(real_ability, percent_excluded)
16 -
17 -
       title(['nTrials = ', num2str(nTrials)], 'FontSize', 16)
       xlabel('Real Ability', 'FontSize', 20)
18 -
19 -
       ylabel('Percent Excluded', 'FontSize', 20)
```

What about subjects not at chance levels?

- 1. Guiding Experimental Design
 - -Modeling false positive rates
 - -Choosing exclusion criteria
 - -Power analysis

Maximizing Power

For more info: rogerstrong.weebly.com/resources.html

G power doesn't know how many trials you are using, likely overestimating your power

Power by N and # of Trials

Power by N and # of Trials

General Notes

- PowerAnalysis.m does most the work, and is called in the example scripts
- NOTE: This version only simulates t-tests between within subject conditions
- Key Components:
 - prefs.data:
 - either a #subjects (rows) x #conditions (columns) array, or a string file name of an excel or .csv file with data listed as #subjects x #conditions.
 - Data can be listed as either decimal (.5) or percentage (50), although you will get a warning for the later (as data will be converted to decimal)
 - If using excel or csv file, there should NOT be a header row
 - prefs.N_range
 - Range of number of participants to simulate. E.g., 10:10:50 will simulate with 10, 20, 30, 40, and 50 participants
 - prefs.trial_range
 - Range of number of trials per condition to simulate. E.g., 8:4:24 will simulate with 8, 12, 16, 20, and 24 trials per condition
 - prefs.alpha
 - p-value to use in power simulations
 - prefs.nSims
 - How many simulations to use for every particpant/trial number combination. 10,000 is a decent estimate and runs pretty quickly, 100,000 is slower but a more stable estimate.
 - prefs.comps
 - Which comparisons to test for significance. Each row is a comparison, with the condition expected to be higher magnitude listed in the first column, and the condition expected to have lower magnitude in the second column. A study will be classified as "successful" only if all listed comparisons are significant (see examples).

Example 1

Example 2

Exp2_Data.xlsx

Data is in percent, so script will convert to decimal and give a warning that this has occurred.

	iste 🗸			
F39		🛟 🐼 🛇 (* fx		
	A	В	С	D
1	41.6666667	33.3333333	83.3333333	50
2	83.3333333	75	75	75
3	50	91.6666667	50	75
4	91.6666667	50	91.6666667	66.6666667
5	100	66.6666667	91.6666667	100
6	100	83.3333333	91.6666667	100
7	58.3333333	33.3333333	66.6666667	50
8	75	58.3333333	50	66.6666667
9	100	100	75	91.6666667
10	41.6666667	33.3333333	50	50
11	100	100	91.6666667	83.3333333
12	50	58.3333333	83.3333333	66.6666667
13	91.6666667	58.3333333	66.6666667	50
14	91.6666667	58.3333333	75	58.3333333
15	91.6666667	58.3333333	50	66.6666667
16	100	50	75	66.6666667
17	100	83.3333333	91.6666667	91.6666667
18	100	91.6666667	100	100

Simulated power for each N X number or trials per condition combo we specified in settings. Looking at this, I know I could achieve > 90% power by running 300 subjects with 12 trials per condition, for example. Note that this is power for ALL 5 comparisons of interest being significant

Note: for my actual power analysis, applied exclusion criteria as well (not currently implemented)

1. Guiding Experimental Design

2. Understanding Results

Before 1st Cross 0 Wrong

Before 1st Cross 0 Wrong

Before 1st Cross 0 Wrong After 1st Cross 7 Wrong

Before 1st Cross 0 Wrong After 1st Cross 7 Wrong

Before 1st Cross 0 Wrong After 1st Cross 7 Wrong After 2nd Cross 10 Wrong

1. Guiding Experimental Design

2. Understanding Results

3. Your examples?